home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 16
/
CU Amiga Magazine's Super CD-ROM 16 (1997-10-16)(EMAP Images)(GB)[!][issue 1997-11].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
ibnum.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-05-28
|
6KB
|
209 lines
/* Copyright (C) 1990, 1996 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* ibnum.c */
/* Level 2 encoded number reading utilities for Ghostscript */
#include "math_.h"
#include "memory_.h"
#include "ghost.h"
#include "errors.h"
#include "stream.h"
#include "ibnum.h"
#include "imemory.h" /* for iutil.h */
#include "iutil.h"
/* Define the number of bytes for a given format of encoded number. */
const byte enc_num_bytes[] = { enc_num_bytes_values };
/* ------ Encoded number reading ------ */
/* Set up to read from an encoded number array/string. */
/* Return <0 for error, or a number format. */
int
num_array_format(const ref *op)
{ switch ( r_type(op) )
{
case t_string:
{ /* Check that this is a legitimate encoded number string. */
const byte *bp = op->value.bytes;
int format = bp[1];
if ( r_size(op) < 4 || bp[0] != bt_num_array_value ||
!num_is_valid(format)
)
return_error(e_rangecheck);
if ( sdecodeshort(bp + 2, format) !=
(r_size(op) - 4) / encoded_number_bytes(format)
)
return_error(e_rangecheck);
return format;
}
case t_array:
case t_mixedarray:
case t_shortarray:
return num_array;
default:
return_error(e_typecheck);
}
}
/* Get the number of elements in an encoded number array/string. */
uint
num_array_size(const ref *op, int format)
{ return (format == num_array ? r_size(op) :
(r_size(op) - 4) / encoded_number_bytes(format));
}
/* Get an encoded number from an array/string according to the given format. */
/* Put the value in np->value.{intval,realval}. */
/* Return t_int if integer, t_real if real, t_null if end of stream, */
/* or an error if the format is invalid. */
int
num_array_get(const ref *op, int format, uint index, ref *np)
{ if ( format == num_array )
{ int code = array_get(op, (long)index, np);
if ( code < 0 )
return t_null;
switch ( r_type(np) )
{
case t_integer:
return t_integer;
case t_real:
return t_real;
default:
return_error(e_rangecheck);
}
}
else
{ uint nbytes = encoded_number_bytes(format);
if ( index >= (r_size(op) - 4) / nbytes )
return t_null;
return sdecode_number(op->value.bytes + 4 + index * nbytes,
format, np);
}
}
/* Internal routine to decode a number in a given format. */
/* Same returns as sget_encoded_number. */
static const double binary_scale[32] = {
#define expn2(n) (0.5 / (1L << (n-1)))
1.0, expn2(1), expn2(2), expn2(3),
expn2(4), expn2(5), expn2(6), expn2(7),
expn2(8), expn2(9), expn2(10), expn2(11),
expn2(12), expn2(13), expn2(14), expn2(15),
expn2(16), expn2(17), expn2(18), expn2(19),
expn2(20), expn2(21), expn2(22), expn2(23),
expn2(24), expn2(25), expn2(26), expn2(27),
expn2(28), expn2(29), expn2(30), expn2(31)
#undef expn2
};
int
sdecode_number(const byte *str, int format, ref *np)
{ switch ( format & 0x170 )
{
case num_int32: case num_int32 + 16:
if ( (format & 31) == 0 )
{ np->value.intval = sdecodelong(str, format);
return t_integer;
}
else
{ np->value.realval =
(double)sdecodelong(str, format) *
binary_scale[format & 31];
return t_real;
}
case num_int16:
if ( (format & 15) == 0 )
{ np->value.intval = sdecodeshort(str, format);
return t_integer;
}
else
{ np->value.realval =
sdecodeshort(str, format) *
binary_scale[format & 15];
return t_real;
}
case num_float:
np->value.realval = sdecodefloat(str, format);
return t_real;
default:
return_error(e_syntaxerror); /* invalid format?? */
}
}
/* ------ Decode number ------ */
/* Decode encoded numbers from a string according to format. */
/* Decode a (16-bit, signed) short. */
short
sdecodeshort(register const byte *p, int format)
{ int a = p[0], b = p[1];
short v = (num_is_lsb(format) ? (b << 8) + a : (a << 8) + b);
#if arch_sizeof_short == 2
return v;
#else
/* Sign-extend if sizeof(short) > 2. */
return (v & 0x7fff) - (v & 0x8000);
#endif
}
/* Decode a (32-bit, signed) long. */
long
sdecodelong(register const byte *p, int format)
{ int a = p[0], b = p[1], c = p[2], d = p[3];
long v = (num_is_lsb(format) ?
((long)d << 24) + ((long)c << 16) + (b << 8) + a :
((long)a << 24) + ((long)b << 16) + (c << 8) + d);
#if arch_sizeof_long == 4
return v;
#else
/* Sign-extend if sizeof(long) > 4. */
return (v & 0x7fffffffL) - (v & 0x80000000L);
#endif
}
/* Decode a float. We don't handle non-IEEE native representations yet. */
float
sdecodefloat(register const byte *p, int format)
{ float fnum;
if ( format != num_float_native )
{ bits32 lnum = (bits32)sdecodelong(p, format);
/* We know IEEE floats take 32 bits. */
#if !arch_floats_are_IEEE
/* Convert IEEE float to native float. */
int sign_expt = lnum >> 23;
int expt = sign_expt & 0xff;
long mant = lnum & 0x7fffff;
if ( expt == 0 && mant == 0 )
fnum = 0;
else
{ mant += 0x800000;
fnum = (float)ldexp((float)mant, expt - 127 - 24);
}
if ( sign_expt & 0x100 )
fnum = -fnum;
#else
fnum = *(float *)&lnum;
#endif
}
else
memcpy(&fnum, p, sizeof(float));
return fnum;
}